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     Abstract 

Elastic deformation of metal parts has been a matter of great concern for 
investigation of researchers in academia and research institutions all over the 
world. Literature reveals that earlier researchers have applied efforts for 
evaluating Gaussian and spline test functions only for predicting elastic 
deformations. However few research efforts have been reported in literature for 

predicting elastic deformation through modified meshless method using 
exponential test functions. This paper presents an investigation for evaluating 
distinct test function for predicting elastic deformations of metal parts using 
modified meshless method. In present work, a modified meshless method has 
been implemented with three distinct test functions namely Gaussian, 
Exponential and Spline both with linear and quadratic basis function. Results of 
investigation reveal that Gaussian test function provides accurate results 
followed by exponential and spline functions. Effect of choosing different 

geometrical parameters affecting the solution for prediction of elastic 
deformation in case of exponential test function has also been presented here. 
Moreover, the present investigation for evaluating distinct test functions for 
predicting elastic deformations of metal parts using modified meshless method 
helps to observe that computational results with higher order basis functions are 
almost ten times better when compared with lower order basis functions. 

1. Introduction 

Elastic deformation of metal parts has been important 

activity in the area of solid mechanics. Numerous 
techniques were used to find elastic deformation of metal 
parts which has been a matter of great concern for 
investigators all over the world. For last few decades many 
researchers have been reported to work on meshless 
methods for alleviating the major drawbacks of Finite 
Element Methods (FEM) [1], [2], [3], [4], [5], [6], [7], [8], 
[9], [10]. The research scholars working on Meshless 

methods criticize the FEM for the grid requirement for 
integration and domain representation. The pioneers 
working in meshless field adopted some fine features of 
FEM and they generated the system equations of the 
physical phenomena over the nodes without any grids 
formation. The first meshless technique named as Smooth 
Particle Hydrodynamics (SPH) method [11] was reported in 
literature in the year 1977 for solving fluid flow problems. 

However, this method could not be much admired by other 
researchers. The leap and bound progress in the area of 
meshless methods took place after the Diffuse Element 
Method (DEM) [12] in the year 1992. Afterwards within a 
short span of time, more number of  meshless methods were 
reported in literature namely Element Free Galerkin (EFG) 
Method in 1994 [13], Boundary Node Method (BNM) [14], 
Reproducing Kernel Particle Method (RKPM) [15], hp-
Meshless Cloud Method [16], Finite Pont Method  (FPM) 

[17], Meshless Local Petrov Galerkin (MLPG) Method 
[18], Finite Spheres Method [19], Local Boundary Integral 
Equation (LBIE) Method [20], Point Interpolation Method 
(PIM) [21], Gradient Smoothing Method [22], Finite Mass 
Method [23], Radial Point Interpolation Based Finite  
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Difference Method [24]. Local Maximum-Entropy (LME) 

[25], Local Kriging (lokriging) Method [26], Generalized 
Meshfree Approximation (GMF) [27], Discrete Least 
Square Meshless Method (DLSM) [28], Radial Basis 
Integral Equation Method [29]. Truly Meshless Point 
Weighted Least Squares (PWLS) Method [30], Repeated 
Replacement Method (RRM) [31], variation of Local Point 
Interpolation Method (vLPIM) [1], Random Differential 
Quadrature (RDQ) Method [1]. Literature reveals that 

earlier researchers have applied efforts for evaluating 
Gaussian, and spline test functions only for predicting 
elastic deformations of metal parts. In the present study, 
very few research efforts have been reported in literature for 
predicting elastic deformation of metal parts through 
modified meshless method using exponential test functions 
both with linear and quadratic basis function. This paper 
presents an investigation for evaluating distinct test function 

for predicting elastic deformations of metal parts using 
modified meshless method. In the present study, a modified 
meshless method has been implemented with three distinct 
test functions, namely Gaussian, Exponential and Spline 
functions both with linear and quadratic basis function. 
Most of the above listed meshless methods need grids 
formation either for interpolation or for integration reasons. 
These Meshless methods are not truly meshless. However, 
there are some other meshless methods which neither 

require any grid formation for integration nor for 
interpolation reasons. Such methods are popularly known as 
truly meshless methods. In the year 2005, Atluri and 
Shengping [32] stated that MLPG method is a concept and 
some other meshless methods can be devised from this 
method by suitable choice of test and trial functions. The 
present work emphasizes on the performance analysis of 
exponential test function for solving elastostatic problems 
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though a truly meshless approach. This truly meshless 
approach utilizes the Moving Least Square Approximation 
Scheme (MLSAS) for approximating field variables and the 
same is presented as under. 

2. Moving Least Square Approximation 

Scheme                     

The MLSAS approach consider 1-D problem domain 
where Schematic representation of Error ei   for a field node 

‘i’, support domain of a node ‘x’, domain of definition of 

point ‘y’, weight function for 1-D case of MLSAS in 

meshless method is presented in Fig. 1. Where  Ωs
x   

represents sub-domain of node 𝑥. To compute the 

distribution of u inside sub-domain Ωs
x  containg randomly 

located nodes  xi , i = 1, 2,3,… n , the MLS approximant 

of field variable represented as uh (x)  is presented by 

Salkauskas and Lancaster [33] as 

uh x = PT x  a x  =   pj
m
j  x  aj   x  ∀x ∈ Ωs

x            (1) 

Where 𝐏𝐓 𝐱 =  𝐩𝟏 𝐱 ,𝐩𝟐 𝐱 ,𝐩𝟑 𝐱 ,… 𝐩𝐦 𝐱    is a set of 

basis functions of order 𝐦 according to Pascal’s [5] for 

completeness of the basis function. And 𝐚 𝐱  is vector of 

unknown coefficients. The vector 𝐚 𝐱  can be computed 

through two approaches according to Breitkopf et al [34] 
[35]. The minimization of weighted discrete 𝐋𝟐  norm is 

applied to determine vector  𝐚 𝐱  using Eq. (2) in matrix 
form 

     uxaPWuxaP
T

ˆ...ˆ.J(x)   (2) 

Where [P] is polynomial basis function vector,  [W] is 
weight function matrix and the functional J x  represents 

weighted square error. Now differentiating Eq. (2) with 

respect to unknown coefficient vector  xa  and equating 

it to zero, the least square error will be then minimized. 
 
∂J

∂a(x)
= 0       (3) 

 
The stationarity of J x   functional in Eqs.  (2) with 

respect to  𝑎 𝑥  will give the following set of linear 

equations between unknown coefficient vector 𝑎 𝑥  and 

actual field variable û . 

     uxBxaxA ˆ
                    (4) 

Now solving for unknown coefficient vector 𝑎 𝑥  from 

Eq. (4) and on substituting it in Eq. (1), will give Eq. (5). 
The similar function is also used in FEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        x

siii

h
n

i

ii

Th xuuxuuxuxxu  


;ˆ;ˆ.ˆ.
1

                                       (5)  

Where 

       xBxAxPx TT .1          (6) 

And 𝜙𝑖 𝑥  is named as shape function, Where 𝓍 

corresponds to sample point of node i within the domain. 

The shape function is non-zero for a point within the 
support domain of node i this is known as compact support 

which is indispensible to preserve the local characteristic of 
the MLSAS. In the year 1998, Atluri [18] pointed out that 
the basis function’s order and the weight function’s type 
have strong effect on the smoothness of the shape function 

𝜙𝑖 𝑥 . The partial derivatives of such shape functions 𝜙𝑖 𝑥  

as required for computation of strain were given by 
Belytschko [13].   

In MLSAS, the linear and quadratic basis functions are 
implemented along with three weight functions popularly 

known as Spline weight function, Gaussian and Exponential 
weight function. Whereas Eq. (7) expresses spline weight 
function as 

 

 

Figure 1- Schematic representation of Error 𝑒𝑖  for a field node „𝑖‟, support domain of a node „x‟, domain of 

definition of point „y‟, weight function for 1-D case of MLSAS in meshless  method. 
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Where w x − xi  is weight function; ii xxd   

is the absolute distance between field node ix  and the point

x .  ir  is support domain radius for node i. It is 

worthwhile to mention here that the weight functions are 
defined only in support domain. The usefulness of said 
weight function was explained by Qing Xia Wang at el [36] 

and Jianfeng Ma [37]. The Gaussian weight function is 
presented through Eq. (8)  
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Where ic  is a scaling parameter which controls the 

shape of the weight function and its effect on weight 

function was suggested by Thomas-Peter Fries [38].  

It was also mentioned by Atluri [39] that the ic  

value could be chosen arbitrary and the results are not a 

strong function of this ic  value. However, Liu [5] and Liu 

Kaiyuan [40] also explained on how to chose the value of 

ic . In current implementation, the value of exponent k is 

taken as 1.  

And the exponential weight function is expressed by Eq. (9) 
as under  
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Where γ is the smoothening parameter and its value 

can vary between 10−3 and 103. In year 2012 Abdollahifar 

[41] took the value of γ = 6 to make the weight function 

bell shaped. The variation in test function with sub-domain 
radius r v/s γ scaling parameter for test function is presented 
through Fig. 2.    

The value of smoothening parameter γ in the current 

implementation has been varied from 1 to 20 to examine the 

behavior of the exponential weight function. Now the 
formulation of elastic analysis of metal parts using modified 
meshless method is given as. 

 

Fig: 2. Variation in Test Function with sub-domain radius r v/s γ scaling parameter for exponential test function 
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3. Formulation of Elastic Analysis Using 

Meshless Approach 
On considering two dimensional region Ω, having 

boundary Γ  and subjected to bi body force as shown in Fig. 

3. The schematic representation of global boundarieΓ, local 

boundaries Γqi
p

 or Γqt  
p

 or Γqu
p

 or Γqi
X  or Γq

p
,  global domain 

Ω, local sub-domains  Ωq, support domains Ωs , boundary 

conditions Γu  or Γt , domain of influence of a node “ 𝑖”, 

domain of definition of a point “ 𝑓 ” nodal discretization for 

2-D case in truly meshless method is presented in Fig. 3.  
The following equilibrium equation Eq. (10) is generally 

utilized for elastic analysis. 

σij,j + bi= 0         (10) 

Where, σij,j represents the stress tensor partial 

derivative. The domain boundary Γu
p
 represents the portion 

of Γ. Here the essential boundary conditions for the pth  

node are specified, and  ui
p

=  u i
p
 holds. The Γt

p
 represents 

piece of Γ, where the natural boundary conditions are σij𝒩j
p
 

= t  i
p
.  The local unit normal vector at pth node that lies on 

the  Γt  boundary is 𝒩j
p
. Atluri et al [42], Liu [43], and 

Abdollahifar et al [41] also applied this local weak form of 

equilibrium equation to a region bounded near pth  node as 

 vi
p

Ωq
p  σij,j + bi dΩ =  0     (11)  

Where Ωq
p
 is the quadrature domain of pth  node. The 

quadrature domain could be any shape as specified by 

Cheng [44]. Moreover Eq. (11), vi
p

 represent test function 

for pth  node. But Chyou‐Chi Chien [45] stated that to make 

the formulation simpler, the test function should satisfy 
some of the properties like compactness, continuity and 
smoothness. 

The local weak form as in Eq. (11) can be given for pth  
node located within region  Ω and on  Γ boundaries i.e. 

Γq
p

= Γqi
p

∪ Γqu
p

 ∪ Γqt
p

    (12) 

On substituting Eq. (12) in Eq. (11) and applying 
divergence theorem, the following Eq. (13) is now obtained. 

 σij𝒩j
p

 
vi

p

Γqt
p dΓ +  vi

p

Γqu
p σij𝒩j

p

 
dΓ −  vi

p

Γqi
p σij𝒩j

p
dΓ −

 (vi,j
p

σij − vi
p

bi
p

)
Ωq

p dΩ = 0                    (13)  

The Eq. (13) is valid for pth  node, where region is 
subjected to body force and a portion of boundary Γ is 

subjected to traction, and displacement boundary conditions 
are enforced. 

 

 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

The Eq. (13) can be deduced to Eq. (14) which is valid 

for all qth   nodes whose local boundaries do not interact 

with boundary Γ. And hence, the integral in Eq. (14) is 

being carried out over internal quadrature and integral over 

quadrature boundary Γqi
q

 vanishes. Because  vi
q
  test 

function is selected such that its value is zero at the 
boundary. 

 (vi,j
q

σij − vi
q

bi
q

)
Ωq

q  dΩ = 0    (14) 

In this formulation, the local weak forms given by Eq. 
(13) and (14) are applicable for continuous local domain 

f 
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of  pth  or  qth  nodes. The continuum problem domain is 

now discretized into N finite nodes. The system equations 
contribution for all the N field nodes is being expressed by 
Eq. (15) in matrix form as under 
 K 2N×2N U 2N×1 =  F 2N×1    (15) 

The solution of these 2N equations now provides nodal 
displacements for N field nodes along X and  𝑌 directions 

and can further be post processed to compute stresses and 
strains.  In the above Eq.’s, the essential boundary 
conditions are enforced using direct interpolation method. 

For  pth  field node, the essential boundary conditions are 

prescribed as  ui
p

= u i
p
 on Γqu

p
 boundary segment of Γ. The 

essential boundary conditions for  pth  node can be applied 

through Eq. (15) just by replacing (2p − 1)th  and (2p)th  

rows of  K 2N×2N  and  F 2N×1matrix by  ϕ
i
pNN

i=1   and  u i
p
  

respectively as suggested by Abdollahifar et al [41]. Where 
NN is number of nodes that lies within domain of influence 

of  pth  node. 

4. Validation of the Meshless formulation: 

Results and Discussion 

Three case studies, namely first through an infinite 
plate with a central circular hole, second through thick 
cylinder subjected to internal pressure and third through  an 

thin plate under normal loading are presented here for 
validating the said 2D Meshless formulation. These case 
studies are discussed as under. 

4.1.  Case study of an infinite plate with a 

central circular hole  
An infinite plate with central circular hole subjected to 

unidirectional normal loading is considered for verifying the 

above presented meshless formulation treating plane stress 
case. A steel plate with central circular hole bearing the 

young’s modulus of elasticity E = 210.8GPa, and Poisson’s 
ratio ν = 0.3, is subjected to normal traction along 𝑋 

direction of 1MPa. Due to symmetry in plate geometry, the 
loading and boundary conditions, the quarter segment of the 
plate is only considered for analysis as shown in Fig. 4. In 
the year 1987 Timoshenko [46] reported that when finite 

plate with circle hole having 
rw

rh
> 5, then the solution is 

very close to that of an infinite plate with hole. Where rw , 
the radial width of the plate is taken as 5m; rh  is the radius 

of circular hole which is 1m and length of quarter plate is 
10m. 

A comparison of  L2   error norm of normal stress 

σxx  for different values of scaling parameter in exponential 

test functions both with linear and quadratic basis functions 
are shown in Fig. 4a & Fig 4b respectively. The close form 
solution of said case as given by Timoshenko [46] has been 
considered here, for the verification of results. The σxx   
stress distribution in the said plate loaded along 𝑋 direction 

as obtained from the close form solution: 

σxx  r, θ = P − P   
rh

r
 

2
 

3

2
cos 2θ + cos4θ  +

P  
3

2
 

rh

r
 

4
cos4θ      (16) 

 
Where P, represents the traction force along X direction. The 

physical quarter plate with hole in present case is 
discretized non-uniformly into 443 nodes. The Gaussian test 
function replicated the stress field for σxx  very well. 

Whereas, the computed results deviate for the other test 

functions. But, the error in computation could be minimized 
to a large degree, if the higher order basis functions are 
used.

 
Fig: 4. Quarter infinite rectangular plate with circular hole nodal discretization, loading and boundary conditions 
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Fig: 4a. Comparison of  𝐿2  error norm of 𝜎𝑥𝑥  for different values of scaling parameter in exponential test functions with linear 

basis function 

 
Fig: 4b. Comparison of  𝐋𝟐  error norm of 𝛔𝐱𝐱  for different values of scaling parameter in exponential test functions with 

quadratic basis function 

 

Fig: 4c. Comparison of  𝐋𝟐  error norm of  𝛔𝐱𝐱    for three different test functions with linear basis function 
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Fig: 4d.  Comparison of  𝐋𝟐  error norm of 𝛔𝐱𝐱  for three different test functions with quadratic basis function 

However, in order to study the impact of scaling factor 

γ, in the exponential test function, the variation of Euclidian 

norm is presented for different values of γ as shown in Fig. 
4a with linear basis function and in Fig. 4b with quadratic 

basis function.   
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current test function. It was also stated by Abdollahifar [41] 
that the suitable choice of this γ scaling parameter is more 

or less arbitrary. The scaling parameter γ as used in the 

exponential test function is tested for higher values. Bar 

charts are presented based on Euclidian norm for both the 
linear and quadratic basis function in Fig. 4c & Fig. 4d for 
all the three test functions. It is observed from these bar 
charts that the Euclidian norm is largest for Spline function, 
hence it gives worst results and the same was also observed 
by Ching [47] and Jianfeng [37] when the Gaussian and the 
spline functions are considered. 

 
Fig: 5. Discretized geometry, boundary conditions and loading of cylinder 
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Fig: 5a. Comparison of  𝐋𝟐  error norm of 𝛔𝛉 for different values of scaling parameter in exponential test functions with linear 

basis function 

 

Fig: 5b. Comparison of  𝐋𝟐 error norm of 𝛔𝛉 for different values of scaling parameter in exponential test functions with quadratic 

basis function 
Due to symmetries in the geometric and the loading 

conditions the upper right quadrant of cylinder is only 
considered in the current analysis. The discretized 

geometry, essential boundary conditions and the loading of 
the cylinder are as shown in Fig 5. The test function and the 
basis functions are same as in earlier problem. A 
comparison of  L2  error norm of the circumferential 

stress or the hoop stress (σθ) for the different values of the 

scaling parameter γ in exponential test functions are 

presented in Fig. 5a & Fig. 5b for both linear and quadratic 
basis functions respectively. 

It can be construed from the bar charts shown in Fig. 
5c & Fig. 5d that the results are in close agreement with 
FEM results for Gaussian and exponential test functions as 

they have least Euclidian error norm for both choices of the 
basis functions. And the spline function shows higher error 
norm for both choices of the basis functions. It could also be 
noticed from Figure 5a & Figure 5b, that the value of 
scaling parameter γ = 7 could be the optimal choice as it 

provides the best computational results for the current 
problem for both types of basis functions. 

 
Fig: 5c. Comparison of  𝐋𝟐  error norm of 𝛔𝛉 for three different test functions with linear basis function 
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Fig: 5d. Comparison of  𝐋𝟐  error norm of 𝛔𝛉 for three different test functions with quadratic basis function 

4.3 Case study of the thin plate under normal loading 

 

Fig: 6. Discretized geometry, boundary conditions and loading of thin plate 
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basis function 

 

Fig: 6b. Comparison of  𝐋𝟐 error norm of 𝛔𝐲𝐲  for different values of scaling parameter in exponential test functions with 

quadratic basis function 
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Fig: 6c. Comparison of  𝐋𝟐  error norm of 𝛔𝐲𝐲  for three different test functions with linear basis function 

 

Figure 6d - Comparison of  𝐋𝟐  error norm of 𝛔𝐲𝐲  for three different test functions with quadratic basis function 
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exponential test function, the Euclidian error norm has been 
presented for the different values of γ as shown in Fig. 6a & 
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5. Conclusion 
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of the parameters, and spline test function contribute to 
inferior results out of these three considered test functions. 

The second prospective for comparing these test 
functions could be the choice of parameters to yield better 
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above that the spline test function is affected by the least 

number of factors, whereas exponential test function needed 
a few more numbers of parameters in its characterization. 
While the Gaussian test function demands the largest 
number of variables in its characterization. It is very 
important to mention here that better results for Gaussian 
and exponential test functions are at the cost of suitably 
chosen parameters. The parameter dependent response of 
the exponential test function could be seen very clearly 

from the above graphs of γ parameter for Exponential Test 

Function v/s Euclidian error norm for both types of basis 
function. It is further suggested that there is no single value 
of scaling parameter that can provide best results. However, 
the γ parameter could be chosen from 7 to 15. It will also be 

important here to state here that even today the choice of 
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these test function parameters is arbitrary and experience 
based and still some modus operandi or procedure is 
required so that the optimum choice of these test function 
parameters can be made to make current approach more 
efficient.  

The investigated case studies and open literature 
reveals that as the order of basis function is increased then 
the computational error can be minimized sufficiently. The 
bar charts for linear and quadratic basis function illustrates 
that for all the three test functions, the accuracy of the 
results is almost ten times better when the quadratic basis 
function is used over the linear basis function.  It can be 
hence inferred from the above, that the choice of order of 

basis function has a significant effect whereas the test 

function’s choice has relatively less influence on the 
accuracy of the solution. 

It could be established from the above implementation 

that the solution of elasticity problem through meshless 
approach has strong dependence on nodal density, order of 
basis function and test function type. The order of basis 
function strongly influences the results as compared to test 
function type which is a strong function of optimum 
geometric parameters. 
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